
Android inside Class TU-3.2

What else can you do with
Android?

Chris Simmonds, 2net Limited

Class TU-3.2
Embedded Live 2010

Copyright © 2010, 2net Limited

1. Abstract
Android is not just for mobile phones: it is an embedded operating system suitable for
any device with a display. Typical applications include medical equipment, test
equipment and multimedia consumer devices. In this workshop I will show you how
Android is put together, and how you can implement it on custom hardware. Key topic
include: kernel porting, installing the Android SDK, implementing native interfaces in
'C' and writing application code in Java. Along the way I will show how the Android
Developer Toolkit (ADT) plug-in for Eclipse makes it easy to develop and debug code
both on the target hardware and also on the development system using an emulator.

- 1 -

Android inside Class TU-3.2

2. Making use of Android
NOTE: I tested these instructions using Ubuntu 10.04 Desktop i386. They should work
on other Linux configurations too, with maybe a little tweaking.

In this section you will install the Android SDK, create a definition of a virtual device
and run the emulator

Install JDK

You will need a version of the Sun Java Development Kit. Other versions of Java will
not work.
There is a choice here: if you only want to install and use the SDK for writing Android
apps then Java 6 is the best choice. But, if you want to build the full Android run-time,
as you will if you are porting to custom hardware, then you will need Java 5.

To install Java 6 on Ubuntu just type
sudo apt-get install sun-java6-jdk

Note: requires that you go to Synaptic->Settings->Repositories and on the Other
software tab, enable http://archive.canonical.com/ubuntu and then reload the
repositories.

To install Java 5...
Download a suitable JDK from java.sun.com, e.g. jdk-5u25-linux-i586.bin, then:

cd ~
sh Downloads/jdk-5u25-linux-i586.bin

Set these shell variables

export JAVA_HOME=$HOME/jdk1.5.0_22
PATH=$JAVA_HOME/bin:$PATH

Hint: add the lines above to your .profile so they are set correctly each time you log
in.

Install the Android SDK

Download the SDK “starter pack” from http://developer.android.com/sdk/index.html.
At the timeof writing the current version was r06. Then:

cd ~
tar xzf Downloads/android-sdk_r06-linux_86.tgz
cd android-sdk-linux_86

PATH=$HOME/android-sdk-linux_86/tools:$PATH

The starter pack contains little besides the tools directory; you need to install at least
one SDK platform. There is one platform for each Android release. In this case you are

- 2 -

http://archive.canonical.com/ubuntu
http://developer.android.com/sdk/index.html

Android inside Class TU-3.2

going to install the 2.2 “Froyo” platform.

Run "android" with no parameters so it starts in GUI mode. From the "Available
Packages" list, select "SDK Platform Android 2.2, API 8, revision2"
& install.

Create an AVD

Since you intend to use the emulator, you need to create a definition of the target
device you are going to emulate. This is called an AVD: Android Virtual Device. You
can do it using the graphical user interface the android tool provides: select “Virtual
Devices” and click the “New...” button.

Or you can do it from the command line with

android create avd -n AVDtest -t 1

 where
-n gives the AVD a name and -t selects the target platform. Run “android list”

to get a list of target platform ids.

Use “android list avd” for a list of them

If you are curious, the AVD is created in $HOME/.android/avd and consists of a
configuration file and a place for the emulator to keep user data.

Run the emulator

emulator -avd AVDtest

Note: the second time you boot the device the screen will be locked. You unlock it by
pressing the menu key.

Other things you can do

When you create an AVD you can specify a skin. The default is HVGA which is
320x480. Other options include

• QVGA (240x320, low density, small screen)
• HVGA (320x480, medium density, normal screen)
• WVGA800 (480x800, high density, normal screen)
• WVGA854 (480x854 high density, normal screen)

You can specify other skins by name, e.g. WVGA (800 x 480) or by resolution.

You can specify an SD card size and image file...

Start the emulator with -shell to get a root shell.
Start the emulator with -show-kernel to see the kernel messages as the emulator
boots.

- 3 -

Android inside Class TU-3.2

Install Eclipse and the ADT

(Optional) Install a statically-linked copy of Busybox

Busybox contains a lot of useful Unix commands that are missing from Android, plus it
has a decent shell with proper command line editing.

tar xjf busybox-1.16.1.tar.bz2
cd busybox-1.16.1/
make menuconfig

In Busybox Settings->Build Options select Build BusyBox as a static binary and
exec prefers applets, then

make

Copy it to Android

adb shell
mkdir /data/bin
exit

Then copy busybox:
adb push busybox /data/bin

Now you can run busybox from the Android shell and get it to run a nice ash shell for
you:

/data/bin/busybox ash

- 4 -

Android inside Class TU-3.2

3. Making Use of Android

Hello World

Most of what you need to know is in the slides. However, you will need to install ant:

sudo apt-get install ant

And, make sure that you have the tools directory of the Android SDK in your path.

Native code

Download a copy of the ndk from http://developer.android.com/sdk/ndk/index.html.

Extract it to your home directory

cd ~
unzip Downloads/android-ndk-r4b-linux-x86.zip

Next you are going to build one of the sample applications, HelloJni. Create a new
Android project

cd ~
mkdir apps
cd apps
android create project --target 1 --name HelloJni --path ./hello-jni --activity
HelloJni --package com.example.hellojni

Copy the ndk sample code over the top

cp ~/android-ndk-r4b/samples/hello-jni/* hello-jni

Build the native code...

cd ~/apps/hello-jni
~/android-ndk-r4b/ndk-build

Build the project

ant debug

Run the emulator and then install the project

adb install -r bin/Hellojni-debug.apk

Test that it works. You should see the string "Hello from JNI !" on the screen and if
you run logcat you should see something like this:

I/ActivityManager(58): Start proc com.example.hellojni for activity
com.example.hellojni/.HelloJni: pid=453 uid=10013 gids={1015}
D/dalvikvm(453): Trying to load lib
/data/data/com.example.hellojni/lib/libhello-jni.so 0x43e372e8
D/dalvikvm(453): Added shared lib

- 5 -

Android inside Class TU-3.2

/data/data/com.example.hellojni/lib/libhello-jni.so 0x43e372e8
D/dalvikvm(453): No JNI_OnLoad found in
/data/data/com.example.hellojni/lib/libhello-jni.so 0x43e372e8, skipping init
I/ActivityManager(58): Displayed activity com.example.hellojni/.HelloJni:
1049 ms (total 1049 ms)

- 6 -

Android inside Class TU-3.2

4. Porting to custom hardware

Merging the Android kernel

This is a question of juggling with three or four kernel trees. They are

1. kernel for your board
2. the mainline kernel it was based on
3. the android kernel
4. the mainline kernel it was based on

It makes life simpler if the mainline kernel is the same in both cases:

 /--> board kernel
mainline kernel
 \--> Android kernel

In this case, you “just” need to create a patch of differences between Android and
mainline and apply it to the kernel for your board, and then clear up any conflicts.
Simple? No, but to make life a bit easier here are some hints.

Install git if you don't have it already

sudo apt-get install git

Clone the Android kernel tree (this will take a while):

git clone git://android.git.kernel.org/kernel/common.git android-kernel

List the branches:

cd android-kernel
git branch -a
* android-2.6.27
 remotes/origin/HEAD -> origin/android-2.6.27
 remotes/origin/android-2.6.25
 remotes/origin/android-2.6.27
 remotes/origin/android-2.6.29
 remotes/origin/android-2.6.32
 remotes/origin/android-2.6.35
 remotes/origin/android-goldfish-2.6.27
 remotes/origin/android-goldfish-2.6.29

This says that the current branch is android-2.6.27. Suppose you want to use android-
2.6.32 as a base, create a new local branch, named android-2.6.32 in this case, which
is based on remote branch origin/android-2.6.32:

git checkout --track -b android-2.6.32 origin/android-2.6.32

Now git branch -a will confirm that you are on android-2.6.32.

- 7 -

Android inside Class TU-3.2

The next stage is to find the differences between the mainline and Android kernels.
First you need to synchronise the tags with the mainline kernel (if you list the tags
with “git tag -l” you will see that more recent ones are missing):

git fetch --tags git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
2.6.32.y.git

Now, say you want to generate a list of patches up to mainline 2.6.32.9:

git format-patch v2.6.32.9..HEAD

Then apply these patches to the kernel for your board:

cd your-kernel
for f in android-kernel/*.patch; do

patch -p1 < $f
done

Look out for patches that don't apply cleanly and go an fix them up (have fun!).
Finally, modify the kernel configuration to include the Android specific options – see
Documentation/android.txt in Linux kernel trees up to and including 2.6.32.

Building the Android Open Source Project code

Install repo
curl http://android.git.kernel.org/repo > ~/bin/repo
chmod a+x ~/bin/repo
mkdir working-directory-name
cd working-directory-name
repo init -u git://android.git.kernel.org/platform/manifest.git

Then, synchronise with

repo sync

(Note this will take quite a long time the first time because it will download several
GiB of code)

Repo Manifests

Repo is a way of managing multiple git repositories. The list of repositories is held in a
manifest, which is a text file in xml format.

When you create a repository using “repo init” you need to give a manifest, default is
“default.xml”. Add a -m to specify a different manifest, e.g.

repo init -u git://android.git.kernel.org/platform/manifest.git -m dalkvik-
plus.xml

To specify a revision, that is, a particular manifest-branch, use the -b option. For
example:

- 8 -

Android inside Class TU-3.2

repo init -u git://android.git.kernel.org/platform/manifest.git -b release-1.0

You can view the manifest used when the repo was initialised by looking in
.repo/manifest.xml

Building the default (generic) product

Type

cd myandroid
export JAVA_HOME=$HOME/jdk1.5.0_22
PATH=$JAVA_HOME/bin:$PATH
. build/envsetup.sh
m

Compiles the run-time tools and file system:

myandroid/out/host/linux-x86 - tools, e.g. adb

myandroid/out/target - target run-time images:
target/product/generic/system.img, userdata.img, ramdisk.img

myandroid/target/product/generic/root/ - rootfs

To create the sdk, type

make sdk

result is in
out/host/linux-x86/android-sdk_eng.chris_linux-x86/

and are zipped up into
Package SDK: out/host/linux-x86/sdk/android-sdk_eng.chris_linux-x86.zip

- 9 -

	1. Abstract
	2. Making use of Android
	Install JDK
	Install the Android SDK
	Create an AVD
	Run the emulator
	Other things you can do
	Install Eclipse and the ADT
	(Optional) Install a statically-linked copy of Busybox

	3. Making Use of Android
	Hello World
	Native code

	4. Porting to custom hardware
	Merging the Android kernel
	Building the Android Open Source Project code
	Install repo
	Repo Manifests
	Building the default (generic) product

