
Why Linux is not an RTOS:
porting hints

Chris Simmonds
2net Limited

Embedded Systems Conference UK. 2009

Copyright © 2009, 2net Limited



2Chris Simmonds 2net Ltd

Overview

 Linux is a popular choice as an embedded OS
 Most projects evolve from previous projects 

often based on an RTOS
 How to get from point A (RTOS) to point B 

(Linux)?
 Is Linux an RTOS??
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Porting options
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The porting dilemma

 How much existing code can I keep?
 How much effort is required to port my 

application to Linux?
 What should I look out for?
 What are the gains?
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Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?
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Different memory models
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Device drivers
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Everything is a file

Linux

f = open (“/dev/ttyS0”, O_RDWR);
l = read (f, buf, len);

/dev/ttyS0

UART driver
4:64

For example, to read characters from first serial port, open 
device node (file) /dev/ttyS0

Major number 4
Minor number 64
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My device doesn't look like a file!

 File read & write operations work well with byte 
streams - such as a serial port

 How about a robot arm?
 The ioctl function allows any interaction you 

want

struct robot_control_block rc;

f = open (“/dev/robot”, O_RDWR);
...
ioctl (f, SET_ROBOT_PARAMTERS, &rc);
...



11Chris Simmonds 2net Ltd

Hint 1

 Identify all code that accesses hardware directly
 Design a file-based interface

 Use ioctl for things that do not naturally fit the file 
concept

 Make this into a device driver
 Remember: keep device drivers as simple as 

possible
 All the complicated stuff should be in the application
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Cheating: user space drivers

 mmap allows an application direct access to 
device memory
 But, cannot handle interrupts
 No control of CPU cache or instruction queue
 Not the “Linux way”

 The Linux User IO subsystem uses mmap to 
provide a flexible framework for user space 
drivers
 UIO [2]
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mmap example

#include <sys/mman.h>

#define IO_PHYS_ADDRESS  0x90600000
#define ARM_POS 0x0034 
#define ARM_MOTION 0x0038

int main (int argc, char *argv[]) 
{ 

unsigned led_dat;
int mh; 
char *ptr; 

mh = open ("/dev/mem", O_RDWR); 
ptr = mmap (0, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED, 

mh, IO_PHYS_ADDRESS);
...
*(unsigned int*)(ptr + ARM_POS) = new_pos;
while (*(unsigned int*)(ptr + ARM_MOTION) != 0)

sleep (1);
...
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Processes
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Pros and cons of processes

 Pro
 Protected memory space
 Resources (memory, open files) released when exit
 Easy to re-start a failed process

 Con
 Communication between processes quite slow & 

cumbersome
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Pros and cons of threads

 Pro
 Easy communication using shared variables, 

mutexes and condition variables
 Similar memory model to RTOS tasks

 Con
 No memory protection between threads in the same 

process
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Scheduling policies

 SCHED_OTHER
 Time share: fairness. Priority set by scheduler

 SCHED_FIFO
 Fixed priority (1 to 99); preempts SCHED_OTHER
 Use this for real-time activities

 SCHED_RR
 As SCHED_FIFO but tasks of same priority time-slice
 Default quantum is 100 ms
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Hint 2

 Make closely-coupled groups of RTOS tasks into 
POSIX threads within a process

 Separate RTOS tasks with little interaction into 
separate processes

 Make real time threads SCHED_FIFO
 Use Rate Monotonic Analysis or similar to choose 

priorities [3]

 All non real-time threads should be 
SCHED_OTHER
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POSIX

 POrtable Operating System Interface
 IEEE standard 1003.1

 Most RTOS functions map to POSIX one-to-one
 Tasks to POSIX threads
 Semaphores and mutexes to POSIX semaphores, 

mutexes and condition variables
 Message queues to POSIX message queues
 Watchdog timers to POSIX clocks and timers
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Look out for

 POSIX Threads
 Threads run immediately they are created
 Not possible to terminate an arbitrary thread

 POSIX semaphores and mutexes
 POSIX has many types of mutex, including priority 

inheritance. See [4]
 POSIX does have semaphores but they are not much 

used. See [5] for a discussion on mutexes vs 
semaphores
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Library and kernel versions

 For full POSIX compliance in Linux you need 
current versions of Linux and the C library
 Kernel >= 2.6.22
 GNU C library >= 2.5

 Beware uClibc [6]
 Small, “embeddable” C library
 Good for small systems with <= 16MiB storage
 BUT, lacks many POSIX functions
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Hint 3

 You are going to have to re-write some code
 Where possible, re-factor code around shared 

data
 Write accessor functions to hide data structure from 

rest of the program
 Protect against concurrent access using a mutex
 In the literature this is called a monitor [7] - makes 

future maintenance and porting much easier
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Is Linux real time?

 Deterministic scheduler
 Static priorities (SCHED_FIFO)

 Priority inheritance mutexes

 Lockable memory - stops demand paging
 High resolution timers

? Deterministic interrupt response
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Demand paging

Program addresses
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Data

Code

Program file

  Pages of code and 
data are read from 
the program file on 
demand 4KiB at a 
time
  Causes jitter in 
real-time programs

Hint:
You can page in and 
lock all memory using

mlockall (MCL_FUTURE);
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Interrupt latency
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Kernel preemption options

 Default - no preemption in kernel mode
 Good for throughput, bad for real-time

 Preemptible kernel
 Reduces jitter in preemption latency
 Good for soft real-time

 PREEMPT_RT [8]
 Reduces jitter in all three areas
 Good for “firm” real-time
 Not in the main line kernel yet
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Hint 4

 In a real-time system, work out what deadlines 
you have and how much jitter you can accept

 Lock memory in any process with real-time 
threads with mlockall

 For soft real-time with jitter ~ millisecond 
enable kernel preemption

 For “firm” real-time with jitter ~ 10's or 100's 
microseconds use the PREEMPT_RT patch
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Summary

 Porting to Linux will require some code 
refactoring
 Hardware requires device drivers
 Tasks become threads in one or more processes
 Map RTOS functions onto POSIX
 Select real time model

 Is Linux an RTOS?
 No: it is a complete operating system!
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