
Why Linux is not an RTOS:
porting hints

Chris Simmonds
2net Limited

Embedded Systems Conference UK. 2009

Copyright © 2009, 2net Limited

2Chris Simmonds 2net Ltd

Overview

 Linux is a popular choice as an embedded OS
 Most projects evolve from previous projects

often based on an RTOS
 How to get from point A (RTOS) to point B

(Linux)?
 Is Linux an RTOS??

3Chris Simmonds 2net Ltd

Porting options

Application

RTOS emulation
library (*)

Linux

Application

RTOS

Virtual machine
monitor

Application

Linux

(*) for example v2lin [1]
 or Mapusoft

Application

Linux

4Chris Simmonds 2net Ltd

The porting dilemma

 How much existing code can I keep?
 How much effort is required to port my

application to Linux?
 What should I look out for?
 What are the gains?

5Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

6Chris Simmonds 2net Ltd

Different memory models

Hardware

RTOS

Application

Hardware

Linux

Application

C library

U
ser space

K
ernel space

RTOS: all one memory space Linux memory spaces

7Chris Simmonds 2net Ltd

Device drivers

Linux

Hardware

Device driver ISR

do_IRQ()

8Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

9Chris Simmonds 2net Ltd

Everything is a file

Linux

f = open (“/dev/ttyS0”, O_RDWR);
l = read (f, buf, len);

/dev/ttyS0

UART driver
4:64

For example, to read characters from first serial port, open
device node (file) /dev/ttyS0

Major number 4
Minor number 64

10Chris Simmonds 2net Ltd

My device doesn't look like a file!

 File read & write operations work well with byte
streams - such as a serial port

 How about a robot arm?
 The ioctl function allows any interaction you

want

struct robot_control_block rc;

f = open (“/dev/robot”, O_RDWR);
...
ioctl (f, SET_ROBOT_PARAMTERS, &rc);
...

11Chris Simmonds 2net Ltd

Hint 1

 Identify all code that accesses hardware directly
 Design a file-based interface

 Use ioctl for things that do not naturally fit the file
concept

 Make this into a device driver
 Remember: keep device drivers as simple as

possible
 All the complicated stuff should be in the application

12Chris Simmonds 2net Ltd

Cheating: user space drivers

 mmap allows an application direct access to
device memory
 But, cannot handle interrupts
 No control of CPU cache or instruction queue
 Not the “Linux way”

 The Linux User IO subsystem uses mmap to
provide a flexible framework for user space
drivers
 UIO [2]

13Chris Simmonds 2net Ltd

mmap example

#include <sys/mman.h>

#define IO_PHYS_ADDRESS 0x90600000
#define ARM_POS 0x0034
#define ARM_MOTION 0x0038

int main (int argc, char *argv[])
{

unsigned led_dat;
int mh;
char *ptr;

mh = open ("/dev/mem", O_RDWR);
ptr = mmap (0, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED,

mh, IO_PHYS_ADDRESS);
...
(unsigned int)(ptr + ARM_POS) = new_pos;
while (*(unsigned int*)(ptr + ARM_MOTION) != 0)

sleep (1);
...

14Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

15Chris Simmonds 2net Ltd

Processes

C library

Linux

PID 1
/bin/init

PID 91
/bin/httpd

PID 103
/bin/controler

T3

T1

T2

Process =
 address space

+
 program

+
 thread of execution

Some process have
> 1 thread

16Chris Simmonds 2net Ltd

Pros and cons of processes

 Pro
 Protected memory space
 Resources (memory, open files) released when exit
 Easy to re-start a failed process

 Con
 Communication between processes quite slow &

cumbersome

17Chris Simmonds 2net Ltd

Pros and cons of threads

 Pro
 Easy communication using shared variables,

mutexes and condition variables
 Similar memory model to RTOS tasks

 Con
 No memory protection between threads in the same

process

18Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

19Chris Simmonds 2net Ltd

Scheduling policies

 SCHED_OTHER
 Time share: fairness. Priority set by scheduler

 SCHED_FIFO
 Fixed priority (1 to 99); preempts SCHED_OTHER
 Use this for real-time activities

 SCHED_RR
 As SCHED_FIFO but tasks of same priority time-slice
 Default quantum is 100 ms

20Chris Simmonds 2net Ltd

Hint 2

 Make closely-coupled groups of RTOS tasks into
POSIX threads within a process

 Separate RTOS tasks with little interaction into
separate processes

 Make real time threads SCHED_FIFO
 Use Rate Monotonic Analysis or similar to choose

priorities [3]

 All non real-time threads should be
SCHED_OTHER

21Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

22Chris Simmonds 2net Ltd

POSIX

 POrtable Operating System Interface
 IEEE standard 1003.1

 Most RTOS functions map to POSIX one-to-one
 Tasks to POSIX threads
 Semaphores and mutexes to POSIX semaphores,

mutexes and condition variables
 Message queues to POSIX message queues
 Watchdog timers to POSIX clocks and timers

23Chris Simmonds 2net Ltd

Look out for

 POSIX Threads
 Threads run immediately they are created
 Not possible to terminate an arbitrary thread

 POSIX semaphores and mutexes
 POSIX has many types of mutex, including priority

inheritance. See [4]
 POSIX does have semaphores but they are not much

used. See [5] for a discussion on mutexes vs
semaphores

24Chris Simmonds 2net Ltd

Library and kernel versions

 For full POSIX compliance in Linux you need
current versions of Linux and the C library
 Kernel >= 2.6.22
 GNU C library >= 2.5

 Beware uClibc [6]
 Small, “embeddable” C library
 Good for small systems with <= 16MiB storage
 BUT, lacks many POSIX functions

25Chris Simmonds 2net Ltd

Hint 3

 You are going to have to re-write some code
 Where possible, re-factor code around shared

data
 Write accessor functions to hide data structure from

rest of the program
 Protect against concurrent access using a mutex
 In the literature this is called a monitor [7] - makes

future maintenance and porting much easier

26Chris Simmonds 2net Ltd

Why Linux is not an RTOS

 Applications run in “user space”
 All hardware interaction is in “kernel space”
 All i/o via files and sockets
 Applications are processes
 Default scheduling policy is time shared
 POSIX API
 Is Linux real-time?

27Chris Simmonds 2net Ltd

Is Linux real time?

 Deterministic scheduler
 Static priorities (SCHED_FIFO)

 Priority inheritance mutexes

 Lockable memory - stops demand paging
 High resolution timers

? Deterministic interrupt response

28Chris Simmonds 2net Ltd

Demand paging

Program addresses

Heap

Data

Code

Program file

 Pages of code and
data are read from
the program file on
demand 4KiB at a
time
 Causes jitter in
real-time programs

Hint:
You can page in and
lock all memory using

mlockall (MCL_FUTURE);

29Chris Simmonds 2net Ltd

Interrupt latency

T0 T1 T2 T3

Interrupt
ISR

starts

ISR
completes

& calls
wake_up

Task is
scheduled

Interrupts
disabled

Preemption
latency

Interrupt
latency

ISR
execute

Time

30Chris Simmonds 2net Ltd

Kernel preemption options

 Default - no preemption in kernel mode
 Good for throughput, bad for real-time

 Preemptible kernel
 Reduces jitter in preemption latency
 Good for soft real-time

 PREEMPT_RT [8]
 Reduces jitter in all three areas
 Good for “firm” real-time
 Not in the main line kernel yet

31Chris Simmonds 2net Ltd

Hint 4

 In a real-time system, work out what deadlines
you have and how much jitter you can accept

 Lock memory in any process with real-time
threads with mlockall

 For soft real-time with jitter ~ millisecond
enable kernel preemption

 For “firm” real-time with jitter ~ 10's or 100's
microseconds use the PREEMPT_RT patch

32Chris Simmonds 2net Ltd

Summary

 Porting to Linux will require some code
refactoring
 Hardware requires device drivers
 Tasks become threads in one or more processes
 Map RTOS functions onto POSIX
 Select real time model

 Is Linux an RTOS?
 No: it is a complete operating system!

33Chris Simmonds 2net Ltd

References
[1] v2lin - VxWorks API for Linux

http://v2lin.sourceforge.net/

[2] UIO: user-space drivers
http://lwn.net/Articles/232575

[3] Rate-monotonic scheduling
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

[4] Mutex mutandis: understanding mutex types and attributes
http://www.embedded-linux.co.uk/tutorial/mutex_mutandis

[5] Mutex vs. Semaphores
http://www.feabhas.com/blog/labels/Semaphore.html

[6] uClibc: A C library for embedded Linux
http://www.uclibc.org/

[7] Monitor (synchronization)
http://en.wikipedia.org/wiki/Monitor_(synchronization)

[8] The PREEMPT_RT real time patch series
http://www.kernel.org/pub/linux/kernel/projects/rt/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

